|
1 For i = 0 To imax 2 For j = 1 To di 3 Select Case test 4 Case Is = 4 5 C2 = 2 6 k1 = (k2 - 1) / h2 ' Eq 15.24 page 196 7 u2 = u * u 8 fac31 = fac3 9 fac3 = k1 + u * (2 * m / h2 - u + C2 * m * u2) 10 If fac3 < 0 And Count = 0 Then 11 Debug.Print Count; sign1; "i"; i; "j"; j - 1; "fac3"; FUSINGX(fac31, "#.############"); " vu"; FUSINGX(vu, "#.#######"); " u"; FUSINGX(u, "#.##########"); " r"; FUSINGX(r, "###.######") 12 sign1 = sign1 * -1 13 Count = 1 14 End If 15 If sign1 = 1 Then kleur = LGreen Else kleur = Yellow 16 If Count > 0 Then 17 Count = Count + 1: 18 If Count >= maxcount Then Count = 0: 19 If sign1 = 1 Then kleur = LRed Else kleur = Black 20 End If 21 vu = sign1 * Sqr(Abs(fac3)) 22 u = u + vu * ddPhi 23 r = 1 / u 24 phi = Phi00 * pi / 180 + i * dPhi + j * ddPhi 25 If Count > 0 And Count < 6 Then 26 Debug.Print Count; sign1; "i"; i; "j"; j; "fac3"; FUSINGX(fac3, "#.############"); " vu"; FUSINGX(vu, "#.#######"); " u"; FUSINGX(u, "#.##########"); " r"; FUSINGX(r, "###.######") 27 End If 28 TESTMAXR eccr 29 If t2 > 0 Then t2 = 0 30 End Select 31 next j 32 ' Display 33 next i |
The following table shows the output of the program.
When you consider the results there are 6 ranges of 5 lines which describe almost
the same event.
Return to calling program: d'Inverno numerical solution Back to my home page: Contents of This Document