|
1 For i = 0 To imax
2 For j = 1 To di
3 Select Case test
4 Case Is = 4
5 C2 = 2
6 k1 = (k2 - 1) / h2 ' Eq 15.24 page 196
7 u2 = u * u
8 fac31 = fac3
9 fac3 = k1 + u * (2 * m / h2 - u + C2 * m * u2)
10 If fac3 < 0 And Count = 0 Then
11 Debug.Print Count; sign1; "i"; i; "j"; j - 1; "fac3";
FUSINGX(fac31, "#.############"); " vu"; FUSINGX(vu, "#.#######");
" u"; FUSINGX(u, "#.##########"); " r"; FUSINGX(r, "###.######")
12 sign1 = sign1 * -1
13 Count = 1
14 End If
15 If sign1 = 1 Then kleur = LGreen Else kleur = Yellow
16 If Count > 0 Then
17 Count = Count + 1:
18 If Count >= maxcount Then Count = 0:
19 If sign1 = 1 Then kleur = LRed Else kleur = Black
20 End If
21 vu = sign1 * Sqr(Abs(fac3))
22 u = u + vu * ddPhi
23 r = 1 / u
24 phi = Phi00 * pi / 180 + i * dPhi + j * ddPhi
25 If Count > 0 And Count < 6 Then
26 Debug.Print Count; sign1; "i"; i; "j"; j; "fac3";
FUSINGX(fac3, "#.############"); " vu"; FUSINGX(vu, "#.#######");
" u"; FUSINGX(u, "#.##########"); " r"; FUSINGX(r, "###.######")
27 End If
28 TESTMAXR eccr
29 If t2 > 0 Then t2 = 0
30 End Select
31 next j
32 ' Display
33 next i
|
The following table shows the output of the program.
When you consider the results there are 6 ranges of 5 lines which describe almost
the same event.
Return to calling program: d'Inverno numerical solution Back to my home page: Contents of This Document